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Abstract
The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a

known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained

and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The

polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer,

leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find

a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The

polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact

time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH

(the CP time constant) and T1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented

in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar

ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the

imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and

T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.
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Scheme 1: Schematic representation of molecular imprinting technique. i) Polymerization process with toluene-imprinted CRYSMEB and epichloro-
hydrin, ii) toluene removal.

Introduction
Cyclodextrin polymers are a subject of great interest because of

their use in pharmaceutical industry [1,2], analytical chemistry

[3-5], wastewater treatment [6] and food industry [7-9]. Water-

insoluble β-cyclodextrin (β-CD) polymers [10] have been

widely described to remove organic pollutants [6,11-13] and

heavy metals [14] from water. The most efficient method for

the synthesis of insoluble polymers is to use di- or polyfunc-

tional linkers with monomers of cyclodextrins. Different effec-

tive crosslinkers have been reported in the literature such as epi-

chlorohydrin [15,16], isocyanates [17,18], polycarboxylic acids

[19,20] and anhydrides [21]. Following a slightly different ap-

proach, Trotta [18] and his group demonstrated that polymeriza-

tion of cyclodextrins with a variety of synthetic equivalents of

di- and tetracarboxylic acids provides an easy, efficient and

environmentally sustainable route to highly cross-linked,

nanoporous polymers commonly referred to as cyclodextrin

nanosponges.

One of the most frequently used crosslinker for insoluble poly-

mers is epichlorohydrin (EP). In this case, the reaction of β-CD

with EP requires very strong alkaline conditions to achieve

deprotonation of the hydroxyl groups. Then, EP reacts with the

alkoxide to form intra- or inter-ether linkages.

We previously proposed the synthesis [22] of soluble and insol-

uble polymers of a partially secondary rim methylated β-CD

(DS = 4.9) commonly called CRYSMEB. In this previous

paper, we described the synthesis of imprinted polymers. The

imprinting technique is based on interactions between a

template and a suitable functional monomer during the prepoly-

merization process. Once the template is removed, the resulting

product is a cross-linked copolymer matrix with specific recog-

nition sites for the template molecule.

As a matter of fact, high-resolution solid-state NMR is a

powerful tool to characterize the structure of polymers [23,24]

and to study their dynamics [25,26]. Crini has reported previ-

ously a solid-state NMR spectroscopy study [27,28] of β-cyclo-

dextrin polymers. At this time, no discussion concerning the

NMR spectroscopic characterization of insoluble imprinted

CRYSMEB polymers has been reported.

The main purpose of these measurements was to explore

possible applications of solid-state NMR spectroscopy for the

characterization, at the atomic level, of polymers obtained from

polydisperse crystalline methyl β-CD (CRYSMEB) and epi-

chlorohydrin in the presence of a guest molecule. Particular

emphasis is devoted to the determination of possible experi-

mental descriptors able to distinguish polymers obtained with

the same synthetic route but in the presence of different

amounts of imprinting agent, as in the present case. We herein

propose an approach based on solid-state 13C NMR techniques

such as variable contact time cross-polarization magic angle

spinning with dipolar decoupling (VCP-MAS) to describe these

new materials. The dynamics of cross-polarization can be

conveniently exploited to fingerprint the new materials and to

provide information for tailored synthesis.

Results and Discussion
The molecular imprinting technique allows the introduction of a

molecular memory for drugs [29,30] or volatile organic com-

pounds [31,32]. This selective recognition in shape, size and

chemical functionality is achieved due to the presence of the

target molecule during the polymerization process (Scheme 1).

Initially the target molecules form a complex with the cyclo-

dextrin followed by a copolymerization of the imprinted
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monomers with the crosslinker. The template introduces highly

specific sites into the polymeric network and, after removal of

the target the polymer is able to rebind the molecule with high

selectivity.

Polymers of CRYSMEB were synthesized according to the

procedure of Mallard Favier [22]. Our synthetic protocol was

chosen to employ a larger ratio of crosslinker to functional

monomer to get insoluble polymers. The deprotonation was

carried out in aqueous basic media and imprinting was

performed in toluene for 20 min before the polymerization

process. After the introduction of toluene, a clear solution was

systematically observed. The absence of light diffraction, as

expected in the case of toluene aggregation, was controlled by

recording the UV–vis absorption spectra in the visible region

(400–700 nm), outside the absorption range of toluene. As flat-

tened signals with absorbances close to zero were obtained for

all of the mixtures, one can conclude that toluene was dissolved

quantitatively in the aqueous phase. Different molar ratios of

toluene/CD were used as reported in Table 1. Toluene was

chosen as a template for a paradigmatic representative of

aromatic organic compounds. The combination of the two para-

meters such as the value of the binding constant between

toluene and β-CD (Kf = 158 M−1) [33] and the high volatility of

toluene leads to the conclusion that toluene is a good template

for imprinting reactions. According to Ritter [34], the

CD–toluene complex fosters mainly the formation of linear

polymers instead of globular polymers and the linear polymer

network promotes a more efficient guest binding due to a more

effective accessibility of the cavity. These points allow an easy

removal of toluene by simple drying in the oven under vacuum.

Additionally, the control of the polymer growth leading to

linear polymer network provided a sufficiently regular system

for the interpretation of the NMR results.

Table 1: Experimental conditions for the synthesis of polymer.a

Polymer EP/CD Toluene/CD

D1 40/1 1/4
D2 40/1 4/1
D3 40/1 3/1

aRatios are molar ratios.

Due to the experimental conditions such as high NaOH concen-

tration, high EP/CD ratio and high temperature [15,35], the

polymerization process leads exclusively to insoluble cross-

linked polymers after EP addition. It should be mentioned that

the formation of intralinked bonds between hydroxyl groups

and epichlorohydrin was reduced due to the presence of methyl

groups in the outer CD cavity. Under the reaction conditions

used (33% NaOH, EP/CD= 40 and T = 60 °C), gel formation

[36] was observed, and the template had no effect on the gel

point. Indeed the polymerization process provided insoluble

cross-linked polymers without any apparent interference due to

the presence of the template during the synthesis.

FTIR analysis
A first inspection of the spectroscopic characteristic of D1, D2

and D3 was achieved by FTIR. The infrared spectra of the

samples, including reference CRYSMEB, were recorded and

are depicted in Figure 1. The fingerprint peaks of the gluco-

pyranose rings were reflected specifically in all polymer

spectra: the C–O–C stretching vibration at 1040 cm−1, the

stretching vibration for the aliphatic CH2 at 2900 cm−1 and the

OH stretching vibration between 3700 and 3000 cm−1. As a

consequence of the crosslinking process with EP, the spectra of

D1, D2 and D3 exhibited a new stretching vibration assigned to

CH2 groups at 2970 cm−1, and a scissoring bending vibration at

1400 cm−1. The presence of these more intense bands indicates

that EP reacted with the hydroxyl groups. The characteristic

water vibration band at around 1650 cm−1, assigned to the

δHOH bending mode, present in the CRYSMEB spectrum, was

indeed absent in the spectra of the polymers. All spectral

features observed for the polymers D1, D2 and D3 were in

agreement with the results obtained by Orpecio and Evans [37]

for β-cyclodextrin–epichlorohydrin polymers.

Figure 1: FTIR spectra of (A): native CRYSMEB, (B): D3 (toluene/CD
3:1), (C): D2 (toluene/CD 4:1), and (D): D1 (toluene/CD 1:4) polymers.

Powder X-ray diffraction spectra
The starting monomer, CRYSMEB and all polymers D1, D2

and D3 were analyzed by X-ray powder diffraction. Figure 2

shows, as an example, the X-ray powder diffraction (XRPD)

profiles of CRYSMEB and polymer D1. The upper trace clearly

displays the typical halos of the amorphous material. This
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finding was indeed unexpected, as the starting material was

supposed to show non-negligible crystallinity. Similar patterns

are observed for D1, as shown in the bottom trace. The diffrac-

tion profiles of D2 and D3 were very similar to that obtained for

D1 and are not reported here. In all the cases the polymeric ma-

terial was completely amorphous. However, all the XRPD of

D1–D3 samples show a shape of the amorphous profile modi-

fied with respect to that of pure CRYSMEB.

Figure 2: Top: XRPD pattern for CRYSMEB. Bottom: XRPD pattern
for D1 polymer. The diffraction peaks denoted with an asterisk at
2θ = 27.48° and 31.7° are due to the presence of traces of residual
NaCl. The assignment was confirmed by collecting the XRDP in the
4–100° range of 2θ and comparing the experimental profile with the
literature pattern of pure NaCl.

NMR analysis
NMR analysis was carried out by 13C {1H} solid-state CP-MAS

NMR techniques and the experimental spectra of the three

samples are shown in Figure 3. The chemical shift range is

50–110 ppm, which is characteristic for the β-CD moiety. The

assignment of the polymer resonances is based on the reported

values for the crystalline permethylated β-CD. Four carbon

resonances due to the glucose unit are observed for all samples

and are reported from larger to smaller chemical shift values:

C(1), C(4), [C(5), C(3) and C(2)], and C(6). The CH2–CH

signals of epichlorohydrin are overlapped with the β-CD reso-

nances, and only the signal at 64 ppm can be assigned to the

epichlorohydrin moiety [22]. In general all resonances mainly

appear as broad single peaks.

No chemical shift changes were observed in the spectra for D1,

D2 and D3, indicating that no major structural modifications

Figure 3: 13C {1H} CP-MAS spectra of polymers D1, D2 and D3. Peak
assignment is given in the upper trace.

Figure 4: 13C {1H} CP-MAS spectra of native CRYSMEB and polymer
D3. Peak assignment is given on CRYSMEB spectrum.

occurred when the amount of the guest molecule toluene is

varied. The line width of the spectral bands in the 13C CP-MAS

NMR spectra can be qualitatively associated with the crys-

tallinity of the samples: the more crystalline the sample is the

sharper are the peaks. However, in the present case the XRPD

analysis (vide supra) ruled out any crystalline character of the

polymers. Thus, the higher resolution obtained for the sample

D3 with respect to D2 and D1 (see top trace in Figure 3), repre-

sents an empirical finding. Indeed, all signals in the spectrum of

sample D3 are sharper than the corresponding peaks in the

spectra of the other two samples, as can be seen considering the

peak at 64 ppm which is assigned to epichlorohydrin.

For comparison, a sample of native CRYSMEB was also

analyzed. The 13C {1H} CP-MAS spectrum is reported in

Figure 4 together with the spectrum of the D3 polymer. The
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comparison of the two experimental spectra reveals that no

chemical shift variations are observed. Consequently, no rele-

vant structural modification occurs on the β-CD moiety during

the polymerization process.

Dynamics of cross polarization –
theoretical description
Important features of the dynamic behavior of a material can be

extracted from solid-state NMR data by the analysis of the

dynamics of the cross-polarization process.

Cross-polarization from abundant spins 1H to dilute spins 13C is

a double resonance technique mainly used to improve the lower
13C sensitivity. If the nuclei are close in space, some dipolar

magnetic interactions are established. The nuclei coupled in

such a way may transfer polarization from the abundant to the

dilute spin (cross-polarization, CP) provided the so called Hart-

mann–Hahn matching condition if fulfilled. Under CP condi-

tions, a significant sensitivity enhancement of the dilute spin

(13C) is achieved. The efficiency of CP depends on structural

and dynamic factors, related to the sample under investigation.

In particular, the internuclear distances and the dynamics of the

functional groups are factors affecting the process. Thus, CP

provides both structural information (the chemical connectivity)

and dynamic insights (the overall molecular dynamics in the

solid state). Pines et al. [38] were the first to discuss the effect

of different types of motion – such as molecular con-

formational changes, molecular reorientation and macroscopic

sample rotation – on the CP process. Later, the influence of

molecular motion on the heteronuclear polarization rate was

investigated in several studies [39].

The dynamics of cross-polarization can be explored by

performing several experiments with increasing CP contact time

and usually it is theoretically described in the ‘fast regime

approximation’ according to the thermodynamic model devel-

oped by Mehring [40]. At the early stage of CP, the 13C magne-

tization is polarized, arising from the 1H–13C heteronuclear

dipolar interactions through 1H reservoirs. Here the growth of

the spin magnetization is governed by the cross-polarization

rate constant, TCH
−1. At long contact times, the 13C magnetiza-

tion follows an exponential decay described by the proton relax-

ation time in a rotating frame, T1ρ. The combination of these

factors leads to the general law for signal intensity reported in

Equation 1:

(1)

Equation 1 describes the time evolution of the CP intensity I(t)

as a function of the contact time t [38]. The intensity behavior is

dictated by two different time constants: TCH and T1ρ, the

former affecting the initial part of the curve, the latter driving

the final decay. When the two relaxation times deviate by at

least two orders of magnitude, it is possible to resolve T1ρ and

TCH parameters separately from the logarithmic plot of the CP

intensity against the contact time.

The CP rate constant TCH
−1 can be easily extracted from the

build-up curves and contains structural and dynamical informa-

tion. This parameter mainly depends on the number of H atoms

attached to a given C atom and on the mobility of the func-

tional group. Thus, a fast cross-polarization process is general-

ly detected in systems containing many H atoms in the prox-

imity of the observed 13C nucleus due to the strong dipolar H–C

interaction. Additionally, the molecular motion influences the

CP rate as well, thus allowing information about molecules that

are entrapped or confined within a porous system. In summary,

both the H–C distances and the flexibility of the functional

groups contribute to the rate of cross-polarization.

Dynamics of cross polarization –
experimental results
The CP magnetization transfer build-up curves were monitored

using a constant CP level at various contact times t, ranging

from 35 μs up to 9 ms. The one-dimensional 13C CP-MAS

spectra were acquired at the constant MAS rate of 10 kHz for

all samples D1, D2, D3 (the spectra of D3 is shown in

Figure 5), and native CRYSMEB to test the applicability of this

measurement to the samples.

The CP build-up curves for all carbon atoms of CRYSMEB are

reported in Figure 6 and the results observed for the polymers

D1 and D3 are shown in Figure 7 as an example. In all cases the

typical CP dynamics profile was obtained, where the short-time

exponential rise of the curves is put down to the 1H–13C

polarization-transfer process due to the residual carbon–proton

dipolar interactions, in turn quantified by TCH. On the other

hand, the intensity decay after reaching the saturation level

mainly originates from the 1H spin–lattice relaxation in the

rotating frame (T1ρ). Both regimes are well-defined within the

contact time range chosen in our experiments.

TCH Contact times: The CP rate (1/TCH) under spin-

locking conditions is determined by the 1H and 13C

relaxation behavior and the effective strength of the dipolar

interaction (which is derived from both the C–H distance and

molecular motion). The experimental data at short CP times for

polymer D1 are illustrated in Figure 8. The plot expanded scale

allows to highlight the signals intensities growth in the range of

0–100 μs. A similar behavior is observed for the other poly-

mers D2 and D3.
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Figure 5: 1D 13C CP/MAS spectra of polymer D3 as a function of the contact time varying from 35 μs to 4 ms.

Figure 6: Cross-polymerization (CP) build-up curve of the 13C reso-
nances with variable contact times for the CRYSMEB sample.

The maximum of the curve is observed in the range of 0.8–2 ms

for the native CRYSMEB sample (see Figure 6), while shorter

contact times (<0.9 ms) are observed for all polymers (see

Figure 7). This indicates, in the latter cases, a highly efficient

magnetization transfer. This is consistent with a rigid molecular

frame, as expected in a cross-linked polymer. As a conse-

quence of such molecular stiffness, strong heteronuclear dipolar

interactions are established and facilitate an effective magneti-

zation transfer from the proton to various carbon atoms. A good

line-shape fitting was obtained for all carbons of the sugar ring

(C1–C5) and C6 for CRYSMEB, while for the three polymers

the C6 signal is strongly overlapped with the epichlorohydrin

resonances, consequently this line was not analyzed. The TCH

values extracted from fitting the exponential rise of the magne-

tization build-up curves are listed in Table 2 for all studied

samples.

First of all we propose analyzing the data for comparing the

monomer with the three polymers. This can be done by

comparing the data present in the columns 3, 5, 7 and 9 of

Table 2. For the CRYSMEB moiety all the carbon atoms show

similar TCH values (Table 2, column 3). Similar results are

observed for the three polymers, as shown by the values of

columns 5, 7 and 9 in the order. For polymers D1 and D3, the

TCH values of the β-CD sugar moiety are decreased with respect

to that observed for native CRYSMEB, while for polymer D2

the opposite trend is observed. The emerging overall picture is

that the polymerization can significantly change the response of

the cyclodextrin macro-ring C atoms to the cross-polarization

with respect to the pristine CRYSMEB. In detail, the sugar ring

C atoms show TCH values correlated to the molar ratio of cyclo-

dextrin to toluene. The observed trend TCH (D2) > TCH

(CRYSMEB) > TCH (D3) > TCH (D1) indicates that the

increasing amount of toluene used in the polymerization reac-

tion is likely to generate a progressively more loosely packed

polymer network that requires longer contact times for the

cross-polarization to be effective. It is also interesting to note

that the range of variation of TCH values is sufficiently broad to

allow for an efficient discrimination among polymers imprinted
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Figure 7: Cross-polymerization (CP) build-up curve of the 13C resonances with variable contact time for polymers D1 (left) and D3 (right).

Table 2: 13C Chemical shifts (ppm), TCH values (in μs) and 1H spin-lattice relaxation in the rotating frame (T1ρ in ms) of the carbon atoms of
CRYSMEB and the polymers D1, D2 and D3.

CRYSMEB Polymer, D1 Polymer, D2 Polymer, D3
Peak Chemical shift (ppm) TCH (μs) T1ρ (ms) TCH (μs) T1ρ (ms) TCH (μs) T1ρ (ms) TCH (μs) T1ρ (ms)

C1 101.4 140.1 6.5 72.4 3.5 160.9 3.6 96.5 3.3
C4 82.7 105.9 6.5 71.2 3.1 173.7 2.9 88.6 2.5
C2, C3, C5 72.3 144.8 6.6 96.5 2.6 160.9 2.4 96.5 1.8
C6 61.1 114.3 6.8 n.d. 3.5 n.d. 1.9 n.d. 2.7
EP 64.2 n.d. 2.5 n.d. 1.7 n.d. 3.6

Figure 8: CP build-up curves of the 13C resonances with cross-poly-
merization in the range 0–100 μs for polymer D1.

with close amounts of the imprinting agent. The polymer

growth in the presence of increasing amounts of toluene leaves

empty voids influencing the cross-polarization rate in terms of

average C–H distances, H atoms density in the proximity of the

observed C and the local dynamics. The data thus point out that

TCH can be used as a descriptor to differentiate polymers with

the same chemical structure and not showing any spectral

differences, as shown by the spectra of Figure 3 where no

chemical shift variations can be detected, but indeed differently

imprinted by toluene.

T1ρ Relaxation times: Proton T1ρ via a resolved carbon

resonance provides information on the relative mobility of the

H atoms in the molecular frame and whether regions of

morphological heterogeneity exist or not. At this stage, it is

important to stress two points: i) T1ρ describes the relaxation

time of the 1H nuclei, and thus it is sensitive to hydrogen

parameters only, including, as an example, the hydration state.

Conversely, the previously reported and discussed TCH

values depend on the mutual C–H distance and H atoms’

density in the proximity of a given C atom; ii) T1ρ and TCH span

a different time scale, the former in milliseconds, the latter in

microseconds.

We have analyzed the magnetization decay for the three

polymer samples D1, D2, D3 and the native CRYSMEB. The

semi logarithmic plot of I/I0 against CP contact time in the

range of 1–5 ms shows a linear behavior and 1/T1ρ is the slope

of the linear fit. The relaxation curves can be represented by a

single exponential indicating that any segmental motion inside

the polymeric frame can be ruled out. The results are reported in

Table 2. All H atoms attached to β-CD carbons of the three

polymers exhibit a rapid T1ρ relaxation compared to the corres-

ponding H atoms of the native CRYSMEB. This fact is in line

with the results previously observed in the case of cyclodextrin

nanosponges [41]. A striking feature from the data in Table 2 is
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that the values of T1ρ for all the H atoms of the three polymers

are basically the same, with no particular variation related to

structure or the synthetic route. In particular, it seems that the

imprinting process has no effect on the T1ρ relaxation values.

These findings thus point out that the three polymers are

morphologically homogeneous and do not show con-

formational heterogeneity. As a consequence, the simultaneous

determination of both values TCH and T1ρ provides complemen-

tary information on the effect of the imprinting process and on

the overall dynamic behavior of the materials.

Conclusion
The current study was carried out in order to investigate the

structure of insoluble imprinted CRYSMEB polymers using 13C

solid-state NMR spectroscopy techniques. The proper charac-

terization of these materials in view of their application as

selective sorbent for aromatic pollutants necessarily passes

through the assessment of the effect of the imprinting process

on the polymeric structure. The CP-MAS NMR spectra showed

that the three polymers share the same chemical structure, as no

apparent chemical shift and line-shape differences are

detectable from the 13C CP-MAS NMR spectra. The study of

the kinetics of the cross-polarization process allowed us to

determine, for a large collection of C atoms of all the systems,

the TCH and T1ρ parameters. A clear-cut physical interpretation

of the numerical values derived from our experiments requires

the formulation of a dynamic model of the polymers, which is

not attempted here and, more importantly, not crucial for the

main goal of this work: the formulation of an easy and efficient

numerical descriptor accounting for the effect of the imprinting

agent in the final materials. Indeed, the combined analysis of

TCH and T1ρ provides a fingerprinting discrimination of the

three polymeric materials here discussed, D1, D2 and D3. TCH

variations were found to be nicely associated to the molar ratio

of toluene/CRYSMEB (i.e. imprinting agent/monomer), with

longer times related to a larger quantity of toluene and, reason-

ably, to the presence of the imprinted voids in the polymer

frame. Conversely, the values of T1ρ measured for the H atoms

attached to the observed C of the polymers did not reveal any

significant variation, either within the same polymer or in com-

parison with the homologous H atoms of the other polymers.

This latter point confirms that the polymer synthesis provides

homogeneous materials, without micro-heterogeneities or

remarkable morphology changes. We are currently extending

this methodology – the combined use of TCH and T1ρ – in order

to provide a general approach for the characterization of the

imprinting features of this class of sorbent materials.

CP-MAS NMR spectra of CRYSMEB-EP polymers can be

easily collected providing sufficient resolution for assignment

of C signals. The exploration of the dynamic behavior and the

molecular morphology of the examined systems is, on our

opinion, the most innovative and original feature of the investi-

gation. Indeed, the solid-state NMR parameters (i.e. chemical

shift, efficiency of cross-polarization and 1H T1ρ relaxation

time) indicate that the addition of toluene leads to a swollen

polymer framework and an increase in molecular mobility (as

shown by the increased TCH).

The TCH parameter for the various C atoms and for the different

batches of polymers could be taken as fingerprint indicator.

Moreover, it would be interesting studying a system in which

the guest molecules are actually entrapped inside the cross-

linked polymer. In this case, the dynamics of the guest could

provide precious information on the state of the included mole-

cule inside the polymer network.

Experimental
Chemicals
Toluene, sodium hydroxide and epichlorohydrin were

purchased from Aldrich and were used as received. CRYSMEB

(DS = 4.9) was provided by Roquette Frères (Lestrem, France).

Materials and instruments
Fourier-transform infrared (FTIR) absorption spectra were

recorded using a FTIR Equinox 55 Bruker spectrometer

equipped with an ATR module, in the range of 4000–500 cm−1

and a resolution of 2 cm−1. The dissolution of toluene in the

aqueous phase was analyzed by UV–vis spectroscopy (Perkin-

Elmer lambda 2S spectrophotometer). X-ray powder diffraction

in the 2θ range of 4.7–40° (step size 0.02°; time per step 0.04 s,

slits 0.6–8 mm, 30 KV × 10 mA, PSD 3) were collected on a

Bruker AXS D2 Phaser diffractometer equipped with LinxEye

detector and in Bragg–Brentano geometry, using Cu Kα radia-

tion (λ = 1.54060 Å) with a Ni filter. The data were collected in

open air and with a quartz monocrystal zero background sample

holder with 0.2 mm depth. Solid-state CP-MAS 13C NMR

spectra were recorded on a Bruker Avance 600 spectrometer,

operating at a frequency of 150.9 MHz and equipped with a

MAS probe head. The powder sample was inserted in a 4 mm

zirconia rotor and spun in air at 10 kHz speed. The conven-

tional 13C spectra were recorded with a proton 90° pulse length

of 4 μs, a contact time of 1 ms and 4 s as recycle delay time.

Each free induction decay (FID) was acquired with 512 scans

and a sweep width of 250 ppm. The TPPM 1H decoupling

sequence [30] was used during the acquisition period. CP build-

up curves were recorded by increasing the length of the contact

pulse from 35 μs to 9 ms. This was done in steps of 35 μs at

short times, while for times longer than 250 μs the value of the

increment was progressively increased. All the experiments

were performed at 298 K. The data analysis was performed

using the OriginPro software (9.0 version). The NMR spectra
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were deconvoluted using OriginPro software (9.0 version).

Each peak was approximated by a Gaussian function curve

fitting analysis.

General procedure for the preparation of the
cyclodextrin polymers
Imprinted polymers were synthesized by a one-step conden-

sation polymerization analogous to that described in [22].

Sodium hydroxide (5 g) was dissolved in water (15 g) and

heated under stirring at 60 °C. CRYSMEB (5 g) was added

slowly to the solution. Toluene was introduced as template and

kept under stirring during 20 min. Then 20 mL of epichloro-

hydrin were added drop wise to the stirred solution at a rate of

about 2 mL every 15 min. At the end of addition, the reaction

mixture was kept at 60 °C for 4 h and the polymers were

obtained in the gel state. After crushing with ethanol and

washing with various solvents, the polymers were dried under

vacuum.
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